If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-3=0
a = 5; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·5·(-3)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*5}=\frac{0-2\sqrt{15}}{10} =-\frac{2\sqrt{15}}{10} =-\frac{\sqrt{15}}{5} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*5}=\frac{0+2\sqrt{15}}{10} =\frac{2\sqrt{15}}{10} =\frac{\sqrt{15}}{5} $
| 7x+4/5x+4=15/11 | | 2(5y−2)=12+6y | | 4y−4y−12=14−2 | | 10m+4-3m=46+12m | | 8x=36-10 | | 7=66-4x | | q-16=-22 | | 5x-8-7x+2=7-9x+3x | | 6+2x-2=7x+25-2x | | 4+8m-3=8m+22-6m | | 3/2=15/z | | 3/2=z/15 | | (z+4)^2=40 | | -6m+79-9(m-1)=4m-(3m-5)-5m+6 | | 32 =15z | | 3z^2=48=0 | | 6x^2-118x-120=0 | | 5u^2-10=0 | | 8-6x=3x^2-8x+2 | | (2x-25)=(x+5) | | 3^(2x-4)=-9 | | 7x-3=3(x+1)+3 | | 1/2x÷1/4=x | | 3^{2x-4}=-9 | | 4x+24-15x=13 | | 7x+4+9x+6=90 | | 5(k+2)-k-3=-6(k+3)+5 | | 2(x-5)+6=x+8 | | 9.4x=4-9x | | 15/p=25/6 | | (m+8)(m+9)=-16 | | 11x=1111 |